Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Naotake Nakamura* and Hirotaka Shimizu

Department of Applied Chemistry, College of Science and Engineering, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga 525-8577, Japan

Correspondence e-mail: nakamura@se.ritsumei.ac.jp

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(C-C) = 0.005 \text{ Å}$ R factor = 0.050 wR factor = 0.120 Data-to-parameter ratio = 16.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved In the title compound, $C_{16}H_{32}Cl_2$, the molecule is centrosymmetric and the molecular skeleton including both terminal Cl atoms has an all-*trans* conformation. The molecules form layers with a thickness of c/2. These features are similar to the tilt smectic C phase of liquid crystals.

Received 15 December 2003 Accepted 17 December 2003 Online 24 December 2003

Comment

The crystal structures of many long-chain aliphatic compounds, such as *n*-alkanes (*e.g.* Nyburg & Gerson, 1992), *n*-higher primary alcohols (*e.g.* Michaud *et al.*, 2000) and α,ω -disubstituted *n*-alkanes, have been studied not only from the view-point of basic polymer science but also as models for smectic liquid crystals. The reason is that the long-chain compounds have an extended rod-like hydrocarbon chain. In addition, the molecular arrangement in the crystalline state forms a layer structure, as in liquid crystals.

The crystal structures of 1,12-dibromododecane (Kulpe *et al.*, 1981) and 1,26-dibromohexacosane (Takamizawa *et al.*, 1992) have already been analyzed by other workers. In addition, we have also analysed 1,14-dibromotetradecane (Uno & Nakamura, 2003), 1,16-dibromohexadecane (Kobayashi *et al.*, 1995) and 1,18-dibromoctadecane (Nakamura *et al.*, 1993). The crystal system of each of these α,ω -dibromoalkanes is monoclinic, and the molecules are arranged in a herring-bone motif. For the α,ω -dichloroalkanes, only the lattice parameters of 1,20-dichloroicosane and 1,26-dichlorohexacosane have been determined (Takamizawa *et al.*, 1992). To obtain more extensive crystal data of the homologs with an even number of C atoms, the crystal structure analysis of 1,16-dichlorohexacdecane, (I), has been carried out.

The molecular structure of (I) is shown in Fig. 1. The molecule is centrosymmetric and all torsion angles involving non-H atoms are close to $\pm 180^{\circ}$, so that the molecular skeleton including both terminal Cl atoms has an all-*trans* conformation. The projection of the crystal structure of (I) along the *b* axis is shown in Fig. 2. The molecules form layers with a thickness of c/2. As shown in Fig. 3, the molecules are arranged in a zigzag manner between adjacent layers, forming a herring-bone motif. The molecular arrangement of (I) is similar to that of the tilt smectic C phase of liquid crystals. In the crystal structure, the shortest Cl···Cl distance is 3.697 (2) Å. The long axes of the molecules are inclined at 37.5 (1)° with respect to the *ab* plane. The dihedral angle between the *trans* zigzag planes of (I) in a layer and those in a

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) 1 - x, 2 - y, 1 - z.]

Figure 2

Projection of the crystal structure of (I) along the b axis.

neighbouring layer is 35.0 (2)°. In the crystalline state, molecules of alkane- α , ω -diols with an even number of C atoms also make a herring-bone motif. The crystal structure of (I) is similar to those of even-numbered alkane- α , ω -diols, but the

Figure 3 The projection of the crystal structure of (I) along the *a* axis.

dihedral angle of (I) mentioned above is larger than those of even-numbered alkane- α,ω -diols [*e.g.* 1,16-hexadecanediol: 4.1 (2)°; Nakamura & Yamamoto, 1994]. This difference of dihedral angles is influenced by interlayer interactions, *i.e.* the molecules of even-numbered alkane- α,ω -diols form hydrogen bonds but those of (I) do not. As a result, the crystal structure of (I) is similar to those of α,ω -dibromoalkanes and alkane- α,ω -diols with an even number of C atoms and these could be regarded as model compounds for the tilt smectic C phase of liquid crystals.

Experimental

The title compound, (I), was synthesized from commercially available 1,16-hexadecanedioic acid (Tokyo Kasei Kogyo Co. Ltd) by esterification, reduction and chlorination. The pure compound was obtained through fractional distillation and recrystallization. The single-crystal of (I) used for the analysis was obtained by slow evaporation of a solution in a mixture of 1,2-dichloroethane and 2-propanol (1:1).

Carrotal	data
Crysiai	aata

$C_{16}H_{32}Cl_2$	$D_x = 1.107 \text{ Mg m}^{-3}$
$M_r = 295.32$	Cu Ka radiation
Monoclinic, P_{2_1}/c	Cell parameters from 20
a = 5.458 (2) Å	reflections
$b = 5.3326 (19) \text{ Å}_{2}$	$\theta = 9.4 19.7^{\circ}$
c = 30.4527 (12) Å	$\mu = 3.15 \text{ mm}^{-1}$
$\beta = 91.102 \ (13)^{\circ}$	T = 296 (1) K
$V = 886.2 (5) \text{ Å}^3$	Plate, colorless
Z = 2	$0.68 \times 0.26 \times 0.01 \text{ mm}$

Data collection

Rigaku AFC-5R diffractometer	$R_{\rm int} = 0.035$
ωscans	$\theta_{\rm max} = 70.2^{\circ}$
Absorption correction: by integra-	$h = -1 \rightarrow 6$
tion (Coppens et al., 1965)	$k = 0 \rightarrow 6$
$T_{\min} = 0.622, \ T_{\max} = 0.975$	$l = -37 \rightarrow 37$
2419 measured reflections	3 standard reflections
1613 independent reflections	every 150 reflections
715 reflections with $F^2 > 2\sigma(F^2)$	intensity decay: 6.2%
Refinement	

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.120$ S = 1.001613 reflections 99 parameters H-atom parameters constrained
$$\begin{split} & w = 4F_o^2/[0.0001F_o^2 + \sigma^2(F_o) + 0.1] \\ & (\Delta/\sigma)_{\max} < 0.001 \\ & \Delta\rho_{\max} = 0.62 \text{ e } \text{\AA}^{-3} \\ & \Delta\rho_{\min} = -0.72 \text{ e } \text{\AA}^{-3} \\ & \text{Extinction correction: Larson} \\ & (1970) \\ & \text{Extinction coefficient: 35.6 (2)} \end{split}$$

Table 1

Selected geometric parameters (Å, °).

Cl1-C1	1.771 (4)	C5-C6	1.529 (4)
C1-C2	1.492 (4)	C6-C7	1.507 (4)
C2-C3	1.512 (5)	C7-C8	1.517 (4)
C3-C4	1.511 (4)	C8-C8 ⁱ	1.514 (5)
C4-C5	1.502 (4)		
Cl1-C1-C2-C3	-177.6 (2)	C4-C5-C6-C7	179.1 (3)
C1-C2-C3-C4	179.1 (3)	C5-C6-C7-C8	-179.9(3)
C2-C3-C4-C5	-179.8(3)	C6-C7-C8-C8 ⁱ	-179.7(3)
C3-C4-C5-C6	179.8 (3)	$C7 - C8 - C8^{i} - C7^{i}$	180.0

Symmetry code: (i) 1 - x, 2 - y, 1 - z.

Table 2

Contact di	stances ((A)	
------------	-----------	-----	--

Cl1···Cl1 ⁱⁱ	3.697 (2)	Cl1···Cl1 ⁱⁱⁱ	3.697 (2)
Symmetry codes: (ii) -2 -	$x, y - \frac{1}{2}, \frac{1}{2} - z;$ (ii	ii) $-2 - x, \frac{1}{2} + y, \frac{1}{2} - z.$	

All H atoms were placed at idealized positions and allowed to ride on their parent C atoms (C-H = 0.95 Å). The isotropic displacement parameters of the H atoms were fixed at $1.2U_{eq}$ of the parent C atom. Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1992); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *CrystalStructure* (Rigaku/MSC, 2001); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYS-TALS* (Watkin *et al.*, 1996); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *CrystalStructure*.

The authors express their gratitude to Mr K. Uno for his support.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–436.
- Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035– 1038.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kobayashi, H., Yamamoto, T. & Nakamura, N. (1995). Cryst. Res. Technol. 30, 275–280.
- Kulpe, S., Seidel, I., Szulzewsky, K., Steger, U. & Steger, E. (1981). Cryst. Res. Technol. 16, 349–356.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
- Michaud, F., Ventolà, L., Calvet, M. T., Cuevas-Diarte, M. A., Solans, X. & Font-Bardía, M. (2000). Acta Cryst. C56, 219–221.
- Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Nakamura, N. & Yamamoto, T. (1994). Acta Cryst. C50, 946-948.
- Nakamura, N., Yamamoto, T., Kobayashi, H. & Yoshimura, Y. (1993). Cryst. Res. Technol. 28, 953–957.
- Nyburg, S. C. & Gerson, A. R. (1992). Acta Cryst. B48, 103-106.
- Rigaku/MSC (2001). CrystalStructure. Version 3.10. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381–5209, USA.
- Takamizawa, K., Kodama, M., Matsunaga, S. & Shiokawa, K. (1992). Eng. Sci. Rep. Kyushu Univ. 13, 341–347.
- Uno, K. & Nakamura, N. (2003). Acta Cryst. E59, 0708-0710.
- Watkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, University of Oxford, England.